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Abstract 
 
Speaker adaptation is an efficient way to model a new speaker 

from an existing speaker-independent model with limited 

speaker-dependent data. In this paper, we investigate the use 

of discriminative training schemes based on the minimum 

phone error (MPE) criterion to improve a well-known speaker 

adaptation technique, a combination of transform-based 

adaptation and Bayesian adaptation. Furthermore, a new 

approach utilizing the statistics of the model-based regression 

tree for controlling the interpolation between maximum 

likelihood (ML) and MPE objective functions is also 

presented. Several comparative experiments were conducted 

on a continuous speech recognition task for Mandarin Chinese. 

Experimental results show that the proposed approach can 

further improve the performance of the original hybrid 

adaptation. 

Index Terms: speaker adaptation, discriminative training, 

minimum phone error  
 

1. Introduction 
 
The performance of speech recognition degrades rapidly when 

there is a mismatch between the test and the training 

conditions, such as a mismatch between speakers. One 

practical approach to solve this problem is to adapt an existing 

speaker-independent (SI) model to a speaker-dependent (SD) 

model with some speaker-specific data. In general, there are 

two typical approaches for speaker adaptation: one is Bayesian 

adaptation, where the acoustic model parameters are directly 

adjusted based on a Bayesian framework, such as maximum a 

posteriori (MAP) adaptation, whereas the other is transform-

based adaptation, where clusters of model parameters are 

transformed individually based on cluster-specific transform 

functions, such as maximum likelihood linear regression 

(MLLR). Relevant studies revealed that a hybrid approach, 

combining MAP adaptation and transform-based adaptation, 

have been convinced to be better than MAP or transform-

based adaptation alone [1].  

Recently discriminative training criteria have been widely 

employed to estimate more accurate HMM models for speech 

recognition, such as maximum mutual information (MMI) [2], 

minimum classification error (MCE) [3], and minimum phone 

error (MPE) training [4]. Therefore, several studies focusing 

on discriminative speaker adaptation have been reported. 

Uebel and Woodland [5] applied an interpolation of ML and 

MMI training criteria to estimate discriminative linear 

transform. Wang and Woodland [6] adopted the MPE 

criterion to estimate discriminative linear transform. In 

addition, Povey et al. [7] investigated the integration the MAP 

scheme into MMI and MPE for task and gender adaptation, 

respectively. 

Based on the observations above, we are motivated to 

present a framework which combines discriminative training 

and speaker adaptation for robust speech recognition. 

Furthermore, an alternative approach for setting the 

interpolation values between ML and MPE objective 

functions based on the statistics of the regression tree is also 

proposed. Experiments on Mandarin Chinese speaker 

adaptation are conducted to illustrate the improvement of the 

proposed approach. 

The rest of the paper is organized as follows. Section 2 

introduces our MPE based discriminative training for speaker 

adaptation; Section 3 proposes a regression tree based 

criterion for setting the interpolation factor. The experimental 

setup and a quantitative assessment of achieved performance 

are presented in Section 4, and Section 5 concludes our 

findings. 

 

2. Discriminative training for speaker 

adaptation 
 
In this paper, we focus on discriminative training based on the 

MPE criterion for speaker adaptation. A two-stage approach is 

investigated to achieve the goal of discriminative speaker 

adaptation. 

 

2.1. A hybrid adaptation (MLLR+MAP) 

 
In the first stage, a hybrid adaptation is adopted which 

employs MLLR followed by MAP adaptation, denoted by 

“MLLR+MAP”. Based on this approach, the estimated model 

mean for the mixture component m of state j is expressed as 

follows: 
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where 
jmµ  is the speaker-dependent mean transformed by 

MLLR, 
jmµ~  is the mean of the observed adaptation data, τ  

is a weighting factor of the a priori knowledge to the 

adaptation data, and 
jmN  is the occupation probability of the 

adaptation data. 

Applying speaker adaptation to acoustic models generally 

improves the total recognition rate. However, fine adjustment 

for each acoustic HMM model is not guaranteed by using such 

approach alone. To make the matter worse, the adjustment of 

HMM parameters by adaptation may trigger some acoustic 

models to blend with their surroundings more closely. This is 



especially the case for those HMM models that are confused 

in the training data. Figure 1 depicts some statistics of phone 

recognition errors (substitution errors) after applying 

MLLR+MAP. Each line in Fig. 1 represents a phone model 

being adapted with different amount of adaptation data. As we 

can see, the performance of some phone models, with high 

substitution errors, deteriorates as the amount of adaptation 

sentences increases. Figure 1 also shows the need to alleviate 

the confusion between competitive phone models via a 

discriminative processing. 

 

 
 

Figure 1: Statistics of phone recognition errors (substitution) 

after applying MLLR+MAP. 

 

2.2. Integrated approach (MLLR+MAP+MPE) 

 
In the second stage, a MPE discriminative training is applied 

based on speaker-specific data. 

By using a weak-sense auxiliary function in HMM 

estimation, the mean 
jmµ% and the variance 2

jmσ% of mixture 

component m of state j of a new HMM parameter set λ%  can 

be re-estimated as follows: 
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where 
jmD is the Gaussian-specific smoothing constant, and 

( )jm Oθ  is the sum of observation data weighted by the 

occupation probability for mixture component m of state j, 
2( )jm Oθ  is the sum of squared observation data weighted by 

the occupation probability for mixture component m of state j; 
num

jmγ  and den

jmγ  are the numerator occupation probabilities and 

the denominator occupation probabilities summed over time 

respectively. 

Besides, as mentioned in [4], I-smoothing can be 

interpreted as an interpolation between ML and MPE 

objective functions, formulated as: 
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where the superscript mle indicates occupation probabilities 

obtained from the alignment of the transcriptions by ML, and 

jm
τ  represents a weighting factor for the contribution of ML. 

The estimation of the parameters in (2) and (3) is then 

obtained by using (4)–(6). 

According to section 2.1, the hybrid approach to speaker 

adaptation is based on MLLR transformation followed by 

MAP adaptation. Therefore, occupancies obtained with ML 

prior, in (5) and (6), would be substituted by the speaker-

adapted models, i.e. the MLLR+MAP prior. 

Our approach is motivated by considering the use of 

MPE training to fine-tune the SD acoustic models. The 

proposed approach of discriminative training for speaker 

adaptation is illustrated with the flow chart shown in Figure 2. 

Briefly, the SI model is first adjusted by MLLR followed by 

MAP adaptation with limited speaker-specific data. Then, the 

adapted SD model is further updated by a lattice-based MPE 

training. The numerator lattice is obtained by the forced 

alignment process on the correct transcriptions of the 

adaptation data, while the denominator lattice is approximated 

with n-best phone string hypotheses via the recognition 

process on the adaptation data [4], [8]. 

 

 
 

Figure 2: Schematic diagram of discriminative training for 

speaker adaptation 

 

3. Regression tree based MPE (RTMPE) 
 

3.1. Regression tree construction 

 
To discriminate possible confusion phones, we propose a new 

approach based on the statistics of the regression tree for 

controlling the interpolation between ML and MPE objective 



functions to discriminate possible confusion phones 

mentioned in Section 2.1. 

For a given set X of mixture components, the Bayesian 

information criterion (BIC) [9] is applied to split HMM model 

parameters into clusters, formulated as: 
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where )|( iMXp  is the likelihood of the set X for the HMM 

model Mi, #(Mi) is the number of parameters of Mi, and n is 

the number of components of X. This X),( iMBIC  value 

represents the likelihood of modeling data X with model Mi, 

while taking the consideration of the number of parameters 

used in the model as a penalty. 

Regression tree construction is performed by the top-

down approach: parent clusters are split iteratively into finer 

children clusters until the stopping criterion is reached. Herein, 

a BIC-based stopping criterion for a given cluster Ci is applied 

and formulated as: 
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where GMMj is a Gaussian mixture model with j mixture 

components. When the )(21 iCBIC∆  value is positive, i.e. 

modeling Ci with two clusters (two Gaussian mixture models) 

has higher probability than modeling it with only one cluster, 

the node Ci will be split. When the )(21 iCBIC∆  value is 

negative, the node Ci will not be split. 

The algorithm for constructing the regression tree is 

described as follows: 

1. Initially group all HMM mixture components into 

one cluster, i.e. the root node of the regression tree 

(RT). 

2. For a given cluster Ci (leaf node) of RT, 

compute )(21 iCBIC∆ . 

3. Split Ci into two new clusters (children leaf nodes) 

if Ci has sufficient amount of component (
0δ>n ) 

and 0)(21 >∆ iCBIC .  
4. Repeat steps 2 and 3 until no leaf node in RT can be 

split. 

 

In the step 3 of the above algorithm, n is the number of 

components in Cj and
0δ  is a threshold for controlling the 

minimum amount of data in a node. This makes sure that a 

leaf node with insufficient amount of data will not be split and 

the time to construct the regression tree can be reduced. 

 

3.2. Selection of Gaussian mixture component 

 
The tree construction process reflects that a node in the lower 

level of the regression tree consists of closer mixture 

components. To control the setting of I-smoothing for 

different Gaussian mixture components based on the 

regression tree RT constructed above, the representative 

mixture components scattered in the leaf nodes of RT are 

further explored. The algorithm for selecting representative 

mixture components is described as follows: 

1. For a given cluster Ci (leaf node) containing 

different phone models {pk}, the following 

conditions are verified: 

(1) Check if the number of mixture components in 

pk in Ci divided by the total number of mixture 

components in Ci is above the threshold 
1δ . 

(2) Check if the number of mixture components in 

pk in Ci divided by the total number of mixture 

components in pk in RT is above the threshold 

2δ . 

(3) Check if there are at least two or more different 

phone models {pk} in Ci satisfying both 

condition (1) and condition (2). 

2. Add those {pk} which satisfy the above conditions 

into a set called the Dominant Set (DS). 

3. Repeat steps 1 and 2 until all leaf nodes in RT have 

been checked. 

 

The mixture components in DS represent the dominant 

components in each cluster. It implies that less weighting 

should be contributed by ML training and more weighting 

should be contributed by MPE training for estimating HMM 

model parameters for the mixture components in DS. The 

approach of I-smoothing setting for MPE training is denoted 

by “Regression Tree based MPE” (RTMPE). The effect of the 

proposed discriminative training for speaker adaptation with 

RTMPE will be presented in the following section. 

 

4. Experiments 
 

4.1. Experimental setup 

 
Several experiments of adaptation for Mandarin Chinese 

speakers were conducted for comparison. Two microphone 

databases were collected and down-sampled to 16 kHz for 

training SI and SD HMM models, respectively. The SI 

database, consisting of about 9500 short sentences, was 

recorded by 100 male and 100 female speakers. The SD 

database was recorded by 11 male and 10 female speakers to 

evaluate our adaptation methods. In the SD database, 160 

short sentences were recorded by each speaker, with 10 to 15 

Chinese characters per sentence, where 60 sentences are used 

for adaptation and 100 sentences for testing. All experiments 

were carried out in supervised mode. 

Mandarin Chinese is a syllable-based language. A 

syllable is composed of a syllable initial followed by a syllable 

final. Since the coarticulation effects within a syllable are 

more significant than those across syllables, only intra-syllable 

context modeling is used in this study. Both initial and final 

units were modeled by 3-state left-to-right HMMs with no 

skipped states, and the silence unit was modeled by a 1-state 

HMM. The HMM models consist of about 2200 Gaussian 

mixtures in total. The acoustic analysis is performed at 10 ms 

frame rate using a 20 ms hamming window. Each frame 

contains 24 spectral feature coefficients, including 12 MFCC 

and their delta values. 

 

4.2. Experimental results 

 
Figure 3 and Figure 4 illustrate the sensitivity of phone error 

rates of SI, MLLR+MAP, and MLLR+MAP+MPE to the 

number of the adaptation sentences in the cases of male and 

female speakers respectively. In comparison with SI baselines, 

applying MLLR+MAP adaptation could reduce the phone 

error rates from 31.77% to 23.76% for male speakers and from 

26.50% to 16.49% for female speakers, for the case of using 

60 adaptation sentences. It is also observed that adaptation 



with MPE training, MLLR+MAP+MPE, can generally 

improve the adaptation performance for both male and female 

speakers.  
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Figure 3: Comparison of MLLR+MAP and MLLR+MAP+ 

MPE for female speakers; the SI baseline is 26.50%. 
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Figure 4: Comparison of MLLR+MAP, MLLR+MAP+MPE, 

and MLLR+MAP+RTMPE for male speakers; the SI baseline 

is 31.77%. 

 

The next experiment is to use the RTMPE approach after 

MLLR+MAP. Currently, we simply set 
0δ , 

1δ , and 
2δ to the 

constant values 80, 1/3, and 1/3, respectively. The 

performance of MLLR+MAP+RTMPE in terms of phone 

error rates for both female and male speakers is also shown in 

Figure 3 and Figure 4. From Figure 4, the discriminative 

training approaches, MLLR+MAP+MPE and 

MLLR+MAP+RTMPE, achieve better performance than the 

approach with the hybrid adaptation alone, namely 

MLLR+MAP. Furthermore, the results illustrate that the 

proposed two-stage approach with MLLR+MAP+RTMPE 

achieves the best performance than the others, giving a total of 

1% improvement to the original MLLR+MAP approach. It 

also reveals that special concern on I-smoothing for distinctive 

mixture components based on the statistics of the regression 

tree is pertinent to MPE training, although the improvement is 

slight. The female results show no improvement from 

MLLR+MAP+RTMPE, giving almost the same performance 

as MLLR+MAP+MPE. This might be the result of lower error 

rates for the female speakers so that the discriminative training 

does not render much effect as for the male speakers. 

 

5. Conclusions 
 

In this study we have presented an approach based on the 

MPE criterion to Mandarin Chinese speaker adaptation. In 

addition, a method for setting the values of interpolation 

factors to different mixture components according to the 

statistics of the regression tree has also been investigated. 

Experimental results have shown that the performance of the 

proposed discriminative schemes can be improved 

continuously and consistently as the number of adaptation 

data increases. As compared to the well-known hybrid 

approach which combines MLLR and MAP adaptation, the 

proposed approach with discriminative training gives better 

performance. 
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